Publications

Export 540 results:
Author Title [ Type(Asc)] Year
Filters: First Letter Of Last Name is S  [Clear All Filters]
Journal Article
Dai Y.L, Millikin R.J, Rolfs Z., Shortreed M.R, Smith L.M.  2022.  A Hybrid Spectral Library and Protein Sequence Database Search Strategy for Bottom-Up and Top-Down Proteomic Data Analysis. Journal of Proteome Research. 21:2609-2618.
Dai Y.L, Millikin R.J, Rolfs Z., Shortreed M.R, Smith L.M.  2022.  A Hybrid Spectral Library and Protein Sequence Database Search Strategy for Bottom-Up and Top-Down Proteomic Data Analysis. Journal of Proteome Research. 21:2609-2618.
Cesnik A.J, Shortreed M.R, Sheynkman G.M, Frey B.L, Smith L.M.  2016.  Human Proteomic Variation Revealed by Combining RNA-Seq Proteogenomics and Global Post-Translational Modification (G-PTM) Search Strategy. Journal of Proteome Research. 15:800-808.
Cesnik A.J, Shortreed M.R, Sheynkman G.M, Frey B.L, Smith L.M.  2016.  Human Proteomic Variation Revealed by Combining RNA-Seq Proteogenomics and Global Post-Translational Modification (G-PTM) Search Strategy. Journal of Proteome Research. 15:800-808.
Cesnik A.J, Shortreed M.R, Sheynkman G.M, Frey B.L, Smith L.M.  2016.  Human Proteomic Variation Revealed by Combining RNA-Seq Proteogenomics and Global Post-Translational Modification (G-PTM) Search Strategy. Journal of Proteome Research. 15:800-808.
Aebersold R., Agar J.N, Amster I.J, Baker M.S, Bertozzi C.R, Boja E.S, Costello C.E, Cravatt B.F, Fenselau C., Garcia B.A et al..  2018.  How many human proteoforms are there? Nature Chemical Biology. 14:206-214.
Aebersold R., Agar J.N, Amster I.J, Baker M.S, Bertozzi C.R, Boja E.S, Costello C.E, Cravatt B.F, Fenselau C., Garcia B.A et al..  2018.  How many human proteoforms are there? Nature Chemical Biology. 14:206-214.
Aebersold R., Agar J.N, Amster I.J, Baker M.S, Bertozzi C.R, Boja E.S, Costello C.E, Cravatt B.F, Fenselau C., Garcia B.A et al..  2018.  How many human proteoforms are there? Nature Chemical Biology. 14:206-214.
Aebersold R., Agar J.N, Amster I.J, Baker M.S, Bertozzi C.R, Boja E.S, Costello C.E, Cravatt B.F, Fenselau C., Garcia B.A et al..  2018.  How many human proteoforms are there? Nature Chemical Biology. 14:206-214.
Aebersold R., Agar J.N, Amster I.J, Baker M.S, Bertozzi C.R, Boja E.S, Costello C.E, Cravatt B.F, Fenselau C., Garcia B.A et al..  2018.  How many human proteoforms are there? Nature Chemical Biology. 14:206-214.
Aebersold R., Agar J.N, Amster I.J, Baker M.S, Bertozzi C.R, Boja E.S, Costello C.E, Cravatt B.F, Fenselau C., Garcia B.A et al..  2018.  How many human proteoforms are there? Nature Chemical Biology. 14:206-214.
Aebersold R., Agar J.N, Amster I.J, Baker M.S, Bertozzi C.R, Boja E.S, Costello C.E, Cravatt B.F, Fenselau C., Garcia B.A et al..  2018.  How many human proteoforms are there? Nature Chemical Biology. 14:206-214.
Drossman H., Luckey J.A, Kostichka A.J, Dcunha J., Smith L.M.  1990.  High-speed separations of DNA sequencing reactions by capillary electrophoresis. Analytical Chemistry. 62:900-903.
Smith L.M.  1991.  High-speed DNA sequencing by capillary gel electrophoresis. Nature. 349:812-813.
Luckey JA, Drossman H, Kostichka T, Smith L.M.  1993.  High-speed DNA sequencing by capillary gel electrophoresis. Methods in Enzymology. 218:154-72.
Westphall MS, Brumley, Jr. RL, Buxton EC, Smith L.M.  1995.  High-speed automated DNA sequencing utilizing from-the-side laser excitation. Proceedings of SPIE - The International Society for Optical Engineering. 2386:45-54.
Smith L.M, Brumley, Jr. RL, Buxton EC, Giddings M, Marchbanks M, Tong X.  1996.  High-speed automated DNA sequencing in ultrathin slab gels. Methods in Enzymology. 271:219-237.
Kolner DE, Guilfoyle RA, Smith L.M.  1994.  A high throughput system for the preparation of single stranded templates grown in microculture. DNA Sequence. 4:253-7.
Luckey J.A, Drossman H., Kostichka A.J, Mead D.A, Dcunha J., Norris T.B, Smith L.M.  1990.  High speed DNA sequencing by capillary electrophoresis. Nucleic Acids Research. 18:4417-4421.
Kostichka AJ, Marchbanks ML, Brumley, Jr. RL, Drossman H, Smith L.M.  1992.  High speed automated DNA sequencing in ultrathin slab gels. Bio/Technology. 10:78-81.
Krause J, Scalf M, Smith L.M.  1999.  High resolution characterization of DNA fragment ions produced by ultraviolet matrix-assisted laser desorption/ionization using linear and reflecting time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry. 10:423-429.
Krause J, Scalf M, Smith L.M.  1999.  High resolution characterization of DNA fragment ions produced by ultraviolet matrix-assisted laser desorption/ionization using linear and reflecting time-of-flight mass spectrometry. Journal of the American Society for Mass Spectrometry. 10:423-429.
Mayer K.S, Chen X., Sanders D., Chen J., Jiang J., N P., Scalf M., Smith L.M, Zhong X..  2019.  HDA9-PWR-HOS15 is a core histone deacetylase complex regulating transcription and development. Plant Physiology. 180(1):342-355.
Mayer K.S, Chen X., Sanders D., Chen J., Jiang J., N P., Scalf M., Smith L.M, Zhong X..  2019.  HDA9-PWR-HOS15 is a core histone deacetylase complex regulating transcription and development. Plant Physiology. 180(1):342-355.
Mayer K.S, Chen X., Sanders D., Chen J., Jiang J., N P., Scalf M., Smith L.M, Zhong X..  2019.  HDA9-PWR-HOS15 is a core histone deacetylase complex regulating transcription and development. Plant Physiology. 180(1):342-355.

Pages